CF1895D XOR Construction
Description
You are given $ n-1 $ integers $ a_1, a_2, \dots, a_{n-1} $ .
Your task is to construct an array $ b_1, b_2, \dots, b_n $ such that:
- every integer from $ 0 $ to $ n-1 $ appears in $ b $ exactly once;
- for every $ i $ from $ 1 $ to $ n-1 $ , $ b_i \oplus b_{i+1} = a_i $ (where $ \oplus $ denotes the bitwise XOR operator).
Input Format
The first line contains one integer $ n $ ( $ 2 \le n \le 2 \cdot 10^5 $ ).
The second line contains $ n-1 $ integers $ a_1, a_2, \dots, a_{n-1} $ ( $ 0 \le a_i \le 2n $ ).
Additional constraint on the input: it's always possible to construct at least one valid array $ b $ from the given sequence $ a $ .
Output Format
Print $ n $ integers $ b_1, b_2, \dots, b_n $ . If there are multiple such arrays, you may print any of them.