CF1904B Collecting Game

Description

You are given an array $ a $ of $ n $ positive integers and a score. If your score is greater than or equal to $ a_i $ , then you can increase your score by $ a_i $ and remove $ a_i $ from the array. For each index $ i $ , output the maximum number of additional array elements that you can remove if you remove $ a_i $ and then set your score to $ a_i $ . Note that the removal of $ a_i $ should not be counted in the answer.

Input Format

Each test contains multiple test cases. The first line contains an integer $ t $ ( $ 1 \leq t \leq 5000 $ ) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $ n $ ( $ 1 \le n \le 10^5 $ ) — the length of the array. The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 10^9 $ ) — the elements of the array. It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 10^5 $ .

Output Format

For each test case, output $ n $ integers, the $ i $ -th of which denotes the maximum number of additional array elements that you can remove if you remove $ a_i $ from the array and then set your score to $ a_i $ .

Explanation/Hint

In the first test case, the answers are as follows: If we start with $ i=4 $ , our initial score is $ a_4=4 $ and $ a=[20,5,1,2] $ . We can remove $ 3 $ additional elements in the following order: 1. Since $ 4 \ge 1 $ , we can remove $ 1 $ and our score becomes $ 5 $ . After this, $ a=[20,5,2] $ . 2. Since $ 5 \ge 5 $ , we can remove $ 5 $ and our score becomes $ 10 $ . After this, $ a=[20,2] $ . 3. Since $ 10 \ge 2 $ , we can remove $ 2 $ and our score becomes $ 12 $ . After this, $ a=[20] $ . If we start with $ i=1 $ we can remove all remaining elements in the array, so the answer is $ 4 $ . If we start with $ i=2 $ , we can remove $ 3 $ additional elements in the following order: $ 1 $ , $ 4 $ , $ 2 $ . If we start with $ i=3 $ , we can remove no additional elements. If we start with $ i=5 $ , we can remove $ 1 $ additional element: $ 1 $ .