CF1904C Array Game
Description
You are given an array $ a $ of $ n $ positive integers. In one operation, you must pick some $ (i, j) $ such that $ 1\leq i < j\leq |a| $ and append $ |a_i - a_j| $ to the end of the $ a $ (i.e. increase $ n $ by $ 1 $ and set $ a_n $ to $ |a_i - a_j| $ ). Your task is to minimize and print the minimum value of $ a $ after performing $ k $ operations.
Input Format
Each test contains multiple test cases. The first line contains an integer $ t $ ( $ 1 \leq t \leq 1000 $ ) — the number of test cases. The description of the test cases follows.
The first line of each test case contains two integers $ n $ and $ k $ ( $ 2\le n\le 2\cdot 10^3 $ , $ 1\le k\le 10^9 $ ) — the length of the array and the number of operations you should perform.
The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1\le a_i\le 10^{18} $ ) — the elements of the array $ a $ .
It is guaranteed that the sum of $ n^2 $ over all test cases does not exceed $ 4\cdot 10^6 $ .
Output Format
For each test case, print a single integer — the smallest possible value of the minimum of array $ a $ after performing $ k $ operations.
Explanation/Hint
In the first test case, after any $ k=2 $ operations, the minimum value of $ a $ will be $ 1 $ .
In the second test case, an optimal strategy is to first pick $ i=1, j=2 $ and append $ |a_1 - a_2| = 3 $ to the end of $ a $ , creating $ a=[7, 4, 15, 12, 3] $ . Then, pick $ i=3, j=4 $ and append $ |a_3 - a_4| = 3 $ to the end of $ a $ , creating $ a=[7, 4, 15, 12, 3, 3] $ . In the final operation, pick $ i=5, j=6 $ and append $ |a_5 - a_6| = 0 $ to the end of $ a $ . Then the minimum value of $ a $ will be $ 0 $ .
In the third test case, an optimal strategy is to first pick $ i=2, j=3 $ to append $ |a_2 - a_3| = 3 $ to the end of $ a $ . Any second operation will still not make the minimum value of $ a $ be less than $ 3 $ .