CF1907E Good Triples

Description

Given a non-negative integer number $ n $ ( $ n \ge 0 $ ). Let's say a triple of non-negative integers $ (a, b, c) $ is good if $ a + b + c = n $ , and $ digsum(a) + digsum(b) + digsum(c) = digsum(n) $ , where $ digsum(x) $ is the sum of digits of number $ x $ . For example, if $ n = 26 $ , then the pair $ (4, 12, 10) $ is good, because $ 4 + 12 + 10 = 26 $ , and $ (4) + (1 + 2) + (1 + 0) = (2 + 6) $ . Your task is to find the number of good triples for the given number $ n $ . The order of the numbers in a triple matters. For example, the triples $ (4, 12, 10) $ and $ (10, 12, 4) $ are two different triples.

Input Format

The first line of input contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. Descriptions of test cases follow. The first and only line of the test case contains one integer $ n $ ( $ 0 \le n \le 10^7 $ ).

Output Format

For each test case output one integer, the number of good triples for the given integer $ n $ . Order of integers in a triple matters.

Explanation/Hint

In the first example, the good triples are $ (0, 0, 11) $ , $ (0, 1, 10) $ , $ (0, 10, 1) $ , $ (0, 11, 0) $ , $ (1, 0, 10) $ , $ (1, 10, 0) $ , $ (10, 0, 1) $ , $ (10, 1, 0) $ , $ (11, 0, 0) $ . In the second example, there is only one good triple $ (0, 0, 0) $ .