CF1909G Pumping Lemma
题目描述
有两个只含小写字母的字符串 $s$ 和 $t$,长度分别为 $n$ 和 $m$。
请计算满足下列要求的字符串三元组 $(x,y,z)$ 有几个:
- $s=x+y+z$ ($+$ 代表连接);
- $t = x+\underbrace{ y+\dots+y }_{k \text{ 个}} + z$,其中 $k$ 为整数。
输入格式
第一行两个整数 $n,m(1 \le n < m \le 10^7)$。
第二行一个字符串 $s$。
第三行一个字符串 $t$。
输出格式
一行,一个整数表示答案。
说明/提示
In the first test case, the only valid triple is $ (x, y, z) = (\texttt{"a"}, \texttt{"bc"}, \texttt{"d"}) $ . In fact,
- $ \texttt{"abcd"} = \texttt{"a"} + \texttt{"bc"} + \texttt{"d"} $ ;
- $ \texttt{"abcbcbcd"} = \texttt{"a"} + \texttt{"bc"} + \texttt{"bc"} + \texttt{"bc"} + \texttt{"d"} $ .
In the second test case, there are $ 5 $ valid triples:
- $ (x, y, z) = (\texttt{""}, \texttt{"a"}, \texttt{"aa"}) $ ;
- $ (x, y, z) = (\texttt{""}, \texttt{"aa"}, \texttt{"a"}) $ ;
- $ (x, y, z) = (\texttt{"a"}, \texttt{"a"}, \texttt{"a"}) $ ;
- $ (x, y, z) = (\texttt{"a"}, \texttt{"aa"}, \texttt{""}) $ ;
- $ (x, y, z) = (\texttt{"aa"}, \texttt{"a"}, \texttt{""}) $ .
In the third test case, there are $ 8 $ valid triples:
- $ (x, y, z) = (\texttt{"ab"}, \texttt{"ba"}, \texttt{"babacaab"}) $ ;
- $ (x, y, z) = (\texttt{"abb"}, \texttt{"ab"}, \texttt{"abacaab"}) $ ;
- $ (x, y, z) = (\texttt{"abba"}, \texttt{"ba"}, \texttt{"bacaab"}) $ ;
- $ (x, y, z) = (\texttt{"ab"}, \texttt{"baba"}, \texttt{"bacaab"}) $ ;
- $ (x, y, z) = (\texttt{"abbab"}, \texttt{"ab"}, \texttt{"acaab"}) $ ;
- $ (x, y, z) = (\texttt{"abb"}, \texttt{"abab"}, \texttt{"acaab"}) $ ;
- $ (x, y, z) = (\texttt{"abbaba"}, \texttt{"ba"}, \texttt{"caab"}) $ ;
- $ (x, y, z) = (\texttt{"abba"}, \texttt{"baba"}, \texttt{"caab"}) $ .