CF1917D Yet Another Inversions Problem
Description
You are given a permutation $ p_0, p_1, \ldots, p_{n-1} $ of odd integers from $ 1 $ to $ 2n-1 $ and a permutation $ q_0, q_1, \ldots, q_{k-1} $ of integers from $ 0 $ to $ k-1 $ .
An array $ a_0, a_1, \ldots, a_{nk-1} $ of length $ nk $ is defined as follows:
$ a_{i \cdot k+j}=p_i \cdot 2^{q_j} $ for all $ 0 \le i < n $ and all $ 0 \le j < k $ For example, if $ p = [3, 5, 1] $ and $ q = [0, 1] $ , then $ a = [3, 6, 5, 10, 1, 2] $ .
Note that all arrays in the statement are zero-indexed. Note that each element of the array $ a $ is uniquely determined.
Find the number of inversions in the array $ a $ . Since this number can be very large, you should find only its remainder modulo $ 998\,244\,353 $ .
An inversion in array $ a $ is a pair $ (i, j) $ ( $ 0 \le i < j < nk $ ) such that $ a_i > a_j $ .
Input Format
The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases.
The first line of each test case contains two integers $ n $ and $ k $ ( $ 1 \le n, k \le 2 \cdot 10^5 $ ) — the lengths of arrays $ p $ and $ q $ .
The second line of each test case contains $ n $ distinct integers $ p_0, p_1, \ldots, p_{n-1} $ ( $ 1 \le p_i \le 2n-1 $ , $ p_i $ is odd) — the array $ p $ .
The third line of each test case contains $ k $ distinct integers $ q_0, q_1, \ldots, q_{k-1} $ ( $ 0 \le q_i < k $ ) — the array $ q $ .
It is guaranteed that the sum of $ n $ over all test cases doesn't exceed $ 2 \cdot 10^5 $ and the sum of $ k $ over all test cases doesn't exceed $ 2 \cdot 10^5 $ .
Output Format
For each test case, output one integer: the number of inversions in array $ a $ modulo $ 998\,244\,353 $ .
Explanation/Hint
In the first test case, array $ a $ is equal to $ [3, 6, 5, 10, 1, 2] $ . There are $ 9 $ inversions in it: $ (0, 4) $ , $ (0, 5) $ , $ (1, 2) $ , $ (1, 4) $ , $ (1, 5) $ , $ (2, 4) $ , $ (2, 5) $ , $ (3, 4) $ , $ (3, 5) $ . Note that these are pairs $ (i, j) $ such that $ i < j $ and $ a_i > a_j $ .
In the second test case, array $ a $ is equal to $ [8, 4, 1, 2, 24, 12, 3, 6, 40, 20, 5, 10] $ . There are $ 25 $ inversions in it.
In the third test case, array $ a $ is equal to $ [1, 2, 4, 8, 16] $ . There are no inversions in it.