CF1934A Too Min Too Max

Description

Given an array $ a $ of $ n $ elements, find the maximum value of the expression: $ $$$|a_i - a_j| + |a_j - a_k| + |a_k - a_l| + |a_l - a_i| $ $

where $ i $ , $ j $ , $ k $ , and $ l $ are four distinct indices of the array $ a $ , with $ 1 \\le i, j, k, l \\le n $ .

Here $ |x| $ denotes the absolute value of $ x$$$.

Input Format

The first line contains one integer $ t $ ( $ 1 \le t \le 500 $ ) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $ n $ ( $ 4 \le n \le 100 $ ) — the length of the given array. The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ -10^6 \le a_i \le 10^6 $ ).

Output Format

For each test case, print a single integer — the maximum value.

Explanation/Hint

In the first test case, for any selection of $ i $ , $ j $ , $ k $ , $ l $ , the answer will be $ 0 $ . For example, $ |a_1 - a_2| + |a_2 - a_3| + |a_3 - a_4| + |a_4 - a_1| = |1 - 1| + |1 - 1| + |1 - 1| + |1 - 1| = 0 + 0 + 0 + 0 = 0 $ . In the second test case, for $ i = 1 $ , $ j = 3 $ , $ k = 2 $ , and $ l = 5 $ , the answer will be $ 6 $ . $ |a_1 - a_3| + |a_3 - a_2| + |a_2 - a_5| + |a_5 - a_1| = |1 - 2| + |2 - 1| + |1 - 3| + |3 - 1| = 1 + 1 + 2 + 2 = 6 $ .