CF1934E Weird LCM Operations
Description
Given an integer $ n $ , you construct an array $ a $ of $ n $ integers, where $ a_i = i $ for all integers $ i $ in the range $ [1, n] $ . An operation on this array is defined as follows:
- Select three distinct indices $ i $ , $ j $ , and $ k $ from the array, and let $ x = a_i $ , $ y = a_j $ , and $ z = a_k $ .
- Update the array as follows: $ a_i = \operatorname{lcm}(y, z) $ , $ a_j = \operatorname{lcm}(x, z) $ , and $ a_k = \operatorname{lcm}(x, y) $ , where $ \operatorname{lcm} $ represents the least common multiple.
Your task is to provide a possible sequence of operations, containing at most $ \lfloor \frac{n}{6} \rfloor + 5 $ operations such that after executing these operations, if you create a set containing the greatest common divisors (GCDs) of all subsequences with a size greater than $ 1 $ , then all numbers from $ 1 $ to $ n $ should be present in this set.After all the operations $ a_i \le 10^{18} $ should hold for all $ 1 \le i \le n $ .
We can show that an answer always exists.
Input Format
The first line contains one integer $ t $ ( $ 1 \le t \le 10^2 $ ) — the number of test cases. The description of the test cases follows.
The first and only line of each test case contains an integer $ n $ ( $ 3 \leq n \leq 3 \cdot 10^{4} $ ) — the length of the array.
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 3 \cdot 10^{4} $ .
Output Format
The first line should contain an integer $ k $ ( $ 0 \leq k \leq \lfloor \frac{n}{6} \rfloor + 5 $ ) — where $ k $ is the number of operations.
The next $ k $ lines should contain the description of each operation i.e. $ 3 $ integers $ i $ , $ j $ and $ k $ , where $ 1 \leq i, j, k \leq n $ and all must be distinct.
Explanation/Hint
In the third test case, $ a = [1, 2, 3, 4, 5, 6, 7] $ .
First operation:
$ i = 3 $ , $ j = 5 $ , $ k = 7 $
$ x = 3 $ , $ y = 5 $ , $ z = 7 $ .
$ a = [1, 2, \operatorname{lcm}(y,z), 4, \operatorname{lcm}(x,z), 6, \operatorname{lcm}(x,y)] $ = $ [1, 2, \color{red}{35}, 4, \color{red}{21}, 6, \color{red}{15}] $ .
Second operation:
$ i = 5 $ , $ j = 6 $ , $ k = 7 $
$ x = 21 $ , $ y = 6 $ , $ z = 15 $ .
$ a = [1, 2, 35, 4, \operatorname{lcm}(y,z), \operatorname{lcm}(x,z), \operatorname{lcm}(x,y)] $ = $ [1, 2, 35, 4, \color{red}{30}, \color{red}{105}, \color{red}{42}] $ .
Third operation:
$ i = 2 $ , $ j = 3 $ , $ k = 4 $
$ x = 2 $ , $ y = 35 $ , $ z = 4 $ .
$ a = [1, \operatorname{lcm}(y,z), \operatorname{lcm}(x,z), \operatorname{lcm}(x,y), 30, 105, 42] $ = $ [1, \color{red}{140}, \color{red}{4}, \color{red}{70}, 30, 105, 42] $ .
Subsequences whose GCD equal to $ i $ is as follows:
$ \gcd(a_1, a_2) = \gcd(1, 140) = 1 $
$ \gcd(a_3, a_4) = \gcd(4, 70) = 2 $
$ \gcd(a_5, a_6, a_7) = \gcd(30, 105, 42) = 3 $
$ \gcd(a_2, a_3) = \gcd(140, 4) = 4 $
$ \gcd(a_2, a_4, a_5, a_6) = \gcd(140, 70, 30, 105) = 5 $
$ \gcd(a_5, a_7) = \gcd(30, 42) = 6 $
$ \gcd(a_2, a_4, a_6, a_7) = \gcd(140, 70, 105, 42) = 7 $