CF193C Hamming Distance
题目描述
定义函数 $h(s,t)$ 为:
- 两个长度相等的字符串 $s,t$ 中满足 $s_i \neq t_i$ 的 $i$ 的个数。
现在给出六个数 $a,b,c,d,e,f$,要你构造出**四个长度相等的仅由字符 $\texttt{ab}$ 构成的字符串** $s_1,s_2,s_3,s_4$,满足:
- $h(s_1,s_2)=a$,$h(s_1,s_3)=b$,$h(s_1,s_4)=c$,$h(s_2,s_3)=d$,$h(s_2,s_4)=e$,$h(s_3,s_4)=f$。
- 它们长度尽可能小。
构造出一个合法的方案,无解输出 $-1$。
数据范围 $0 \leq a,b,c,d,e,f \leq 10^5$,$\max\{a,b,c,d,e,f\}>0$。
输入格式
第一行三个整数 $a, b, c$;
第二行两个整数 $d, e$;
第三行一个整数 $f$。
输出格式
第一行,一个整数表示字符串长度 $len$。
接下来四行,每行一个长度为 $len$ 的字符串 $s_i$
本题包含 SPJ,所以不用担心多解的问题