CF1944B Equal XOR
Description
You are given an array $ a $ of length $ 2n $ , consisting of each integer from $ 1 $ to $ n $ exactly twice.
You are also given an integer $ k $ ( $ 1 \leq k \leq \lfloor \frac{n}{2} \rfloor $ ).
You need to find two arrays $ l $ and $ r $ each of length $ \mathbf{2k} $ such that:
- $ l $ is a subset $ ^\dagger $ of $ [a_1, a_2, \ldots a_n] $
- $ r $ is a subset of $ [a_{n+1}, a_{n+2}, \ldots a_{2n}] $
- [bitwise XOR](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) of elements of $ l $ is equal to the bitwise XOR of elements of $ r $ ; in other words, $ l_1 \oplus l_2 \oplus \ldots \oplus l_{2k} = r_1 \oplus r_2 \oplus \ldots \oplus r_{2k} $
It can be proved that at least one pair of $ l $ and $ r $ always exists. If there are multiple solutions, you may output any one of them.
$ ^\dagger $ A sequence $ x $ is a subset of a sequence $ y $ if $ x $ can be obtained by deleting several (possibly none or all) elements of $ y $ and rearranging the elements in any order. For example, $ [3,1,2,1] $ , $ [1, 2, 3] $ , $ [1, 1] $ and $ [3, 2] $ are subsets of $ [1, 1, 2, 3] $ but $ [4] $ and $ [2, 2] $ are not subsets of $ [1, 1, 2, 3] $ .
Input Format
Each test contains multiple test cases. The first line contains a single integer $ t $ ( $ 1 \leq t \leq 5000 $ ) — the number of test cases. The description of the test cases follows.
The first line of each test case contains $ 2 $ integers $ n $ and $ k $ ( $ 2 \le n \le 5 \cdot 10^4 $ , $ 1 \leq k \leq \lfloor \frac{n}{2} \rfloor $ ).
The second line contains $ 2n $ integers $ a_1, a_2, \ldots, a_{2n} $ ( $ 1 \le a_i \le n $ ). It is guaranteed that every integer from $ 1 $ to $ n $ occurs exactly twice in $ a $ .
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 5 \cdot 10^4 $ .
Output Format
For each test case, output two lines.
On the first line of output, output $ 2k $ integers $ l_1, l_2, \ldots, l_{2k} $ .
On the second line of output, output $ 2k $ integers $ r_1, r_2, \ldots r_{2k} $ .
If there are multiple solutions, you may output any one of them.
Explanation/Hint
In the first test case, we choose $ l=[2,1] $ and $ r=[2,1] $ . $ [2, 1] $ is a subset of $ [a_1, a_2] $ and $ [2, 1] $ is a subset of $ [a_3, a_4] $ , and $ 2 \oplus 1 = 2 \oplus 1 = 3 $ .
In the second test case, $ 6 \oplus 4 = 1 \oplus 3 = 2 $ .