CF1955D Inaccurate Subsequence Search

Description

Maxim has an array $ a $ of $ n $ integers and an array $ b $ of $ m $ integers ( $ m \le n $ ). Maxim considers an array $ c $ of length $ m $ to be good if the elements of array $ c $ can be rearranged in such a way that at least $ k $ of them match the elements of array $ b $ . For example, if $ b = [1, 2, 3, 4] $ and $ k = 3 $ , then the arrays $ [4, 1, 2, 3] $ and $ [2, 3, 4, 5] $ are good (they can be reordered as follows: $ [1, 2, 3, 4] $ and $ [5, 2, 3, 4] $ ), while the arrays $ [3, 4, 5, 6] $ and $ [3, 4, 3, 4] $ are not good. Maxim wants to choose every subsegment of array $ a $ of length $ m $ as the elements of array $ c $ . Help Maxim count how many selected arrays will be good. In other words, find the number of positions $ 1 \le l \le n - m + 1 $ such that the elements $ a_l, a_{l+1}, \dots, a_{l + m - 1} $ form a good array.

Input Format

The first line contains an integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The first line of each test case contains three integers $ n $ , $ m $ , and $ k $ ( $ 1 \le k \le m \le n \le 2 \cdot 10^5 $ ) — the number of elements in arrays $ a $ and $ b $ , the required number of matching elements. The second line of each test case contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^6 $ ) — the elements of array $ a $ . Elements of the array $ a $ are not necessarily unique. The third line of each test case contains $ m $ integers $ b_1, b_2, \dots, b_m $ ( $ 1 \le b_i \le 10^6 $ ) — the elements of array $ b $ . Elements of the array $ b $ are not necessarily unique. It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ . Similarly, it is guaranteed that the sum of $ m $ over all test cases does not exceed $ 2 \cdot 10^5 $ .

Output Format

For each test case, output the number of good subsegments of array $ a $ on a separate line.

Explanation/Hint

In the first example, all subsegments are good. In the second example, good subsegments start at positions $ 1 $ , $ 2 $ , and $ 3 $ . In the third example, good subsegments start at positions $ 1 $ and $ 2 $ .