CF1971G XOUR

Description

You are given an array $ a $ consisting of $ n $ nonnegative integers. You can swap the elements at positions $ i $ and $ j $ if $ a_i~\mathsf{XOR}~a_j < 4 $ , where $ \mathsf{XOR} $ is the [bitwise XOR operation](https://en.wikipedia.org/wiki/Bitwise_operation#XOR). Find the lexicographically smallest array that can be made with any number of swaps. An array $ x $ is lexicographically smaller than an array $ y $ if in the first position where $ x $ and $ y $ differ, $ x_i < y_i $ .

Input Format

The first line contains a single integer $ t $ ( $ 1 \leq t \leq 10^4 $ ) — the number of test cases. The first line of each test case contains a single integer $ n $ ( $ 1 \leq n \leq 2\cdot10^5 $ ) — the length of the array. The second line of each test case contains $ n $ integers $ a_i $ ( $ 0 \leq a_i \leq 10^9 $ ) — the elements of the array. It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .

Output Format

For each test case, output $ n $ integers — the lexicographically smallest array that can be made with any number of swaps.

Explanation/Hint

For the first test case, you can swap any two elements, so we can produce the sorted array. For the second test case, you can swap $ 2 $ and $ 1 $ (their $ \mathsf{XOR} $ is $ 3 $ ), $ 7 $ and $ 5 $ (their $ \mathsf{XOR} $ is $ 2 $ ), and $ 7 $ and $ 6 $ (their $ \mathsf{XOR} $ is $ 1 $ ) to get the lexicographically smallest array.