CF1976B Increase/Decrease/Copy

Description

You are given two integer arrays: array $ a $ of length $ n $ and array $ b $ of length $ n+1 $ . You can perform the following operations any number of times in any order: - choose any element of the array $ a $ and increase it by $ 1 $ ; - choose any element of the array $ a $ and decrease it by $ 1 $ ; - choose any element of the array $ a $ , copy it and append the copy to the end of the array $ a $ . Your task is to calculate the minimum number of aforementioned operations (possibly zero) required to transform the array $ a $ into the array $ b $ . It can be shown that under the constraints of the problem, it is always possible.

Input Format

The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. Each test case consists of three lines: - the first line contains a single integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ); - the second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^9 $ ); - the third line contains $ n + 1 $ integers $ b_1, b_2, \dots, b_{n + 1} $ ( $ 1 \le b_i \le 10^9 $ ). Additional constraint on the input: the sum of $ n $ over all test cases doesn't exceed $ 2 \cdot 10^5 $ .

Output Format

For each test case, print a single integer — the minimum number of operations (possibly zero) required to transform the array $ a $ into the array $ b $ .

Explanation/Hint

In the first example, you can transform $ a $ into $ b $ as follows: $ [2] \rightarrow [2, 2] \rightarrow [1, 2] \rightarrow [1, 3] $ .