CF1977B Binary Colouring

Description

You are given a positive integer $ x $ . Find any array of integers $ a_0, a_1, \ldots, a_{n-1} $ for which the following holds: - $ 1 \le n \le 32 $ , - $ a_i $ is $ 1 $ , $ 0 $ , or $ -1 $ for all $ 0 \le i \le n - 1 $ , - $ x = \displaystyle{\sum_{i=0}^{n - 1}{a_i \cdot 2^i}} $ , - There does not exist an index $ 0 \le i \le n - 2 $ such that both $ a_{i} \neq 0 $ and $ a_{i + 1} \neq 0 $ . It can be proven that under the constraints of the problem, a valid array always exists.

Input Format

Each test contains multiple test cases. The first line of input contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The description of the test cases follows. The only line of each test case contains a single positive integer $ x $ ( $ 1 \le x < 2^{30} $ ).

Output Format

For each test case, output two lines. On the first line, output an integer $ n $ ( $ 1 \le n \le 32 $ ) — the length of the array $ a_0, a_1, \ldots, a_{n-1} $ . On the second line, output the array $ a_0, a_1, \ldots, a_{n-1} $ . If there are multiple valid arrays, you can output any of them.

Explanation/Hint

In the first test case, one valid array is $ [1] $ , since $ (1) \cdot 2^0 = 1 $ . In the second test case, one possible valid array is $ [0,-1,0,0,1] $ , since $ (0) \cdot 2^0 + (-1) \cdot 2^1 + (0) \cdot 2^2 + (0) \cdot 2^3 + (1) \cdot 2^4 = -2 + 16 = 14 $ .