CF1985G D-Function

Description

Let $ D(n) $ represent the sum of digits of $ n $ . For how many integers $ n $ where $ 10^{l} \leq n < 10^{r} $ satisfy $ D(k \cdot n) = k \cdot D(n) $ ? Output the answer modulo $ 10^9+7 $ .

Input Format

The first line contains an integer $ t $ ( $ 1 \leq t \leq 10^4 $ ) – the number of test cases. Each test case contains three integers $ l $ , $ r $ , and $ k $ ( $ 0 \leq l < r \leq 10^9 $ , $ 1 \leq k \leq 10^9 $ ).

Output Format

For each test case, output an integer, the answer, modulo $ 10^9 + 7 $ .

Explanation/Hint

For the first test case, the only values of $ n $ that satisfy the condition are $ 1 $ and $ 2 $ . For the second test case, the only values of $ n $ that satisfy the condition are $ 1 $ , $ 10 $ , and $ 11 $ . For the third test case, all values of $ n $ between $ 10 $ inclusive and $ 100 $ exclusive satisfy the condition.