CF1986A X Axis

Description

You are given three points with integer coordinates $ x_1 $ , $ x_2 $ , and $ x_3 $ on the $ X $ axis ( $ 1 \leq x_i \leq 10 $ ). You can choose any point with an integer coordinate $ a $ on the $ X $ axis. Note that the point $ a $ may coincide with $ x_1 $ , $ x_2 $ , or $ x_3 $ . Let $ f(a) $ be the total distance from the given points to the point $ a $ . Find the smallest value of $ f(a) $ . The distance between points $ a $ and $ b $ is equal to $ |a - b| $ . For example, the distance between points $ a = 5 $ and $ b = 2 $ is $ 3 $ .

Input Format

Each test consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \leq t \leq 10^3 $ ) — the number of test cases. Then follows their descriptions. The single line of each test case contains three integers $ x_1 $ , $ x_2 $ , and $ x_3 $ ( $ 1 \leq x_i \leq 10 $ ) — the coordinates of the points.

Output Format

For each test case, output the smallest value of $ f(a) $ .

Explanation/Hint

In the first test case, the smallest value of $ f(a) $ is achieved when $ a = 1 $ : $ f(1) = |1 - 1| + |1 - 1| + |1 - 1| = 0 $ . In the second test case, the smallest value of $ f(a) $ is achieved when $ a = 5 $ : $ f(5) = |1 - 5| + |5 - 5| + |9 - 5| = 8 $ . In the third test case, the smallest value of $ f(a) $ is achieved when $ a = 8 $ : $ f(8) = |8 - 8| + |2 - 8| + |8 - 8| = 6 $ . In the fourth test case, the smallest value of $ f(a) $ is achieved when $ a = 9 $ : $ f(10) = |10 - 9| + |9 - 9| + |3 - 9| = 7 $ .