CF1988A Split the Multiset

Description

A multiset is a set of numbers in which there can be equal elements, and the order of the numbers does not matter. For example, $ \{2,2,4\} $ is a multiset. You have a multiset $ S $ . Initially, the multiset contains only one positive integer $ n $ . That is, $ S=\{n\} $ . Additionally, there is a given positive integer $ k $ . In one operation, you can select any positive integer $ u $ in $ S $ and remove one copy of $ u $ from $ S $ . Then, insert no more than $ k $ positive integers into $ S $ so that the sum of all inserted integers is equal to $ u $ . Find the minimum number of operations to make $ S $ contain $ n $ ones.

Input Format

Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 1000 $ ). Description of the test cases follows. The only line of each testcase contains two integers $ n,k $ ( $ 1\le n\le 1000,2\le k\le 1000 $ ).

Output Format

For each testcase, print one integer, which is the required answer.

Explanation/Hint

For the first test case, initially $ S=\{1\} $ , already satisfying the requirement. Therefore, we need zero operations. For the second test case, initially $ S=\{5\} $ . We can apply the following operations: - Select $ u=5 $ , remove $ u $ from $ S $ , and insert $ 2,3 $ into $ S $ . Now, $ S=\{2,3\} $ . - Select $ u=2 $ , remove $ u $ from $ S $ , and insert $ 1,1 $ into $ S $ . Now, $ S=\{1,1,3\} $ . - Select $ u=3 $ , remove $ u $ from $ S $ , and insert $ 1,2 $ into $ S $ . Now, $ S=\{1,1,1,2\} $ . - Select $ u=2 $ , remove $ u $ from $ S $ , and insert $ 1,1 $ into $ S $ . Now, $ S=\{1,1,1,1,1\} $ . Using $ 4 $ operations in total, we achieve the goal. For the third test case, initially $ S=\{6\} $ . We can apply the following operations: - Select $ u=6 $ , remove $ u $ from $ S $ , and insert $ 1,2,3 $ into $ S $ . Now, $ S=\{1,2,3\} $ . - Select $ u=2 $ , remove $ u $ from $ S $ , and insert $ 1,1 $ into $ S $ . Now, $ S=\{1,1,1,3\} $ . - Select $ u=3 $ , remove $ u $ from $ S $ , and insert $ 1,1,1 $ into $ S $ . Now, $ S=\{1,1,1,1,1,1\} $ . Using $ 3 $ operations in total, we achieve the goal. For the fourth test case, initially $ S=\{16\} $ . We can apply the following operations: - Select $ u=16 $ , remove $ u $ from $ S $ , and insert $ 4,4,4,4 $ into $ S $ . Now, $ S=\{4,4,4,4\} $ . - Repeat for $ 4 $ times: select $ u=4 $ , remove $ u $ from $ S $ , and insert $ 1,1,1,1 $ into $ S $ . Using $ 5 $ operations in total, we achieve the goal.