CF2009A Minimize!

Description

You are given two integers $ a $ and $ b $ ( $ a \leq b $ ). Over all possible integer values of $ c $ ( $ a \leq c \leq b $ ), find the minimum value of $ (c - a) + (b - c) $ .

Input Format

The first line contains $ t $ ( $ 1 \leq t \leq 55 $ ) — the number of test cases. Each test case contains two integers $ a $ and $ b $ ( $ 1 \leq a \leq b \leq 10 $ ).

Output Format

For each test case, output the minimum possible value of $ (c - a) + (b - c) $ on a new line.

Explanation/Hint

In the first test case, you can choose $ c = 1 $ and obtain an answer of $ (1 - 1) + (2 - 1) = 1 $ . It can be shown this is the minimum value possible. In the second test case, you can choose $ c = 6 $ and obtain an answer of $ (6 - 3) + (10 - 6) = 7 $ . It can be shown this is the minimum value possible.