CF2009G1 Yunli's Subarray Queries (easy version)
Description
This is the easy version of the problem. In this version, it is guaranteed that $ r=l+k-1 $ for all queries.
For an arbitrary array $ b $ , Yunli can perform the following operation any number of times:
- Select an index $ i $ . Set $ b_i = x $ where $ x $ is any integer she desires ( $ x $ is not limited to the interval $ [1,n] $ ).
Denote $ f(b) $ as the minimum number of operations she needs to perform until there exists a consecutive subarray $ ^{\text{∗}} $ of length at least $ k $ in $ b $ .
Yunli is given an array $ a $ of size $ n $ and asks you $ q $ queries. In each query, you must output $ \sum_{j=l+k-1}^{r} f([a_l, a_{l+1}, \ldots, a_j]) $ . Note that in this version, you are only required to output $ f([a_l, a_{l+1}, \ldots, a_{l+k-1}]) $ .
$ ^{\text{∗}} $ If there exists a consecutive subarray of length $ k $ that starts at index $ i $ ( $ 1 \leq i \leq |b|-k+1 $ ), then $ b_j = b_{j-1} + 1 $ for all $ i < j \leq i+k-1 $ .
Input Format
The first line contains $ t $ ( $ 1 \leq t \leq 10^4 $ ) — the number of test cases.
The first line of each test case contains three integers $ n $ , $ k $ , and $ q $ ( $ 1 \leq k \leq n \leq 2 \cdot 10^5 $ , $ 1 \leq q \leq 2 \cdot 10^5 $ ) — the length of the array, the length of the consecutive subarray, and the number of queries.
The following line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \leq a_i \leq n $ ).
The following $ q $ lines contain two integers $ l $ and $ r $ ( $ 1 \leq l \leq r \leq n $ , $ r=l+k-1 $ ) — the bounds of the query.
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ and the sum of $ q $ over all test cases does not exceed $ 2 \cdot 10^5 $ .
Output Format
Output $ \sum_{j=l+k-1}^{r} f([a_l, a_{l+1}, \ldots, a_j]) $ for each query on a new line.
Explanation/Hint
In the first query of the first testcase, $ b=[1,2,3,2,1] $ . Yunli can make a consecutive subarray of length $ 5 $ in $ 2 $ moves:
- Set $ b_4=4 $
- Set $ b_5=5 $
After operations $ b=[1, 2, 3, 4, 5] $ .In the second query of the first testcase, $ b=[2,3,2,1,2] $ . Yunli can make a consecutive subarray of length $ 5 $ in $ 3 $ moves:
- Set $ b_3=0 $
- Set $ b_2=-1 $
- Set $ b_1=-2 $
After operations $ b=[-2, -1, 0, 1, 2] $ .