CF2013E Prefix GCD
Description
Since Mansur is tired of making legends, there will be no legends for this task.
You are given an array of positive integer numbers $ a_1, a_2, \ldots, a_n $ . The elements of the array can be rearranged in any order. You need to find the smallest possible value of the expression $ $$$\gcd(a_1) + \gcd(a_1, a_2) + \ldots + \gcd(a_1, a_2, \ldots, a_n), $ $ where $ \\gcd(a\_1, a\_2, \\ldots, a\_n) $ denotes the greatest common divisor (GCD) of $ a\_1, a\_2, \\ldots, a\_n$$$.
Input Format
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10^4 $ ). The description of the test cases follows.
The first line of each test case contains a single number $ n $ ( $ 1 \le n \le 10^5 $ ) — the size of the array.
The second line of each test case contains $ n $ numbers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 10^5 $ ) — the initial array.
The sum of $ n $ over all test cases does not exceed $ 10^5 $ .
The sum of $ \max(a_1, a_2, \ldots, a_n) $ over all test cases does not exceed $ 10^5 $ .
Output Format
For each test case, output a single number on a separate line — the answer to the problem.
Explanation/Hint
In the first test case, the elements can be rearranged as follows: $ [2, 4, 2] $ . Then the answer will be $ \gcd(2) + \gcd(2, 4) + \gcd(2, 4, 2) = 2 + 2 + 2 = 6 $ .
In the third test case, the elements can be rearranged as follows: $ [6, 10, 15] $ . Then the answer will be $ \gcd(6) + \gcd(6, 10) + \gcd(6, 10, 15) = 6 + 2 + 1 = 9 $ .