CF2026D Sums of Segments
Description
You are given a sequence of integers $ [a_1, a_2, \dots, a_n] $ . Let $ s(l,r) $ be the sum of elements from $ a_l $ to $ a_r $ (i. e. $ s(l,r) = \sum\limits_{i=l}^{r} a_i $ ).
Let's construct another sequence $ b $ of size $ \frac{n(n+1)}{2} $ as follows: $ b = [s(1,1), s(1,2), \dots, s(1,n), s(2,2), s(2,3), \dots, s(2,n), s(3,3), \dots, s(n,n)] $ .
For example, if $ a = [1, 2, 5, 10] $ , then $ b = [1, 3, 8, 18, 2, 7, 17, 5, 15, 10] $ .
You are given $ q $ queries. During the $ i $ -th query, you are given two integers $ l_i $ and $ r_i $ , and you have to calculate $ \sum \limits_{j=l_i}^{r_i} b_j $ .
Input Format
The first line contains one integer $ n $ ( $ 1 \le n \le 3 \cdot 10^5 $ ).
The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ -10 \le a_i \le 10 $ ).
The third line contains one integer $ q $ ( $ 1 \le q \le 3 \cdot 10^5 $ ).
Then $ q $ lines follow, the $ i $ -th of them contains two integers $ l_i $ and $ r_i $ ( $ 1 \le l_i \le r_i \le \frac{n(n+1)}{2} $ ).
Output Format
Print $ q $ integers, the $ i $ -th of which should be equal to $ \sum \limits_{j=l_i}^{r_i} b_j $ .