CF2032B Medians
Description
You are given an array $ a = [1, 2, \ldots, n] $ , where $ n $ is odd, and an integer $ k $ .
Your task is to choose an odd positive integer $ m $ and to split $ a $ into $ m $ subarrays $ ^{\dagger} $ $ b_1, b_2, \ldots, b_m $ such that:
- Each element of the array $ a $ belongs to exactly one subarray.
- For all $ 1 \le i \le m $ , $ |b_i| $ is odd, i.e., the length of each subarray is odd.
- $ \operatorname{median}([\operatorname{median}(b_1), \operatorname{median}(b_2), \ldots, \operatorname{median}(b_m)]) = k $ , i.e., the median $ ^{\ddagger} $ of the array of medians of all subarrays must equal $ k $ . $ \operatorname{median}(c) $ denotes the median of the array $ c $ .
$ ^{\dagger} $ A subarray of the array $ a $ of length $ n $ is the array $ [a_l, a_{l + 1}, \ldots, a_r] $ for some integers $ 1 \le l \le r \le n $ .
$ ^{\ddagger} $ A median of the array of odd length is the middle element after the array is sorted in non-decreasing order. For example: $ \operatorname{median}([1,2,5,4,3]) = 3 $ , $ \operatorname{median}([3,2,1]) = 2 $ , $ \operatorname{median}([2,1,2,1,2,2,2]) = 2 $ .
Input Format
Each test consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 5000 $ ) — the number of test cases. The description of the test cases follows.
The first line of each test case contains two integers $ n $ and $ k $ ( $ 1 \le k \le n < 2 \cdot 10^5 $ , $ n $ is odd) — the length of array $ a $ and the desired median of the array of medians of all subarrays.
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .
Output Format
For each test case:
- If there is no suitable partition, output $ -1 $ in a single line.
- Otherwise, in the first line, output an odd integer $ m $ ( $ 1 \le m \le n $ ), and in the second line, output $ m $ distinct integers $ p_1, p_2 , p_3 , \ldots, p_m $ ( $ 1 = p_1 < p_2 < p_3 < \ldots < p_m \le n $ ) — denoting the left borders of each subarray.
In detail, for a valid answer $ [p_1, p_2, \ldots, p_m] $ :
- $ b_1 = \left[ a_{p_1}, a_{p_1 + 1}, \ldots, a_{p_2 - 1} \right] $
- $ b_2 = \left[ a_{p_2}, a_{p_2 + 1}, \ldots, a_{p_3 - 1} \right] $
- $ \ldots $
- $ b_m = \left[ a_{p_m}, a_{p_m + 1}, \ldots, a_n \right] $ .
If there are multiple solutions, you can output any of them.
Explanation/Hint
In the first test case, the given partition has $ m = 1 $ and $ b_1 = [1] $ . It is obvious that $ \operatorname{median}([\operatorname{median}([1])]) = \operatorname{median}([1]) = 1 $ .
In the second test case, the given partition has $ m = 3 $ and:
- $ b_1 = [1] $
- $ b_2 = [2] $
- $ b_3 = [3] $
Therefore, $ \operatorname{median}([\operatorname{median}([1]), \operatorname{median}([2]), \operatorname{median}([3])]) = \operatorname{median}([1, 2, 3]) = 2 $ .
In the third test case, there is no valid partition for $ k = 3 $ .
In the fourth test case, the given partition has $ m = 5 $ and:
- $ b_1 = [1, 2, 3] $
- $ b_2 = [4, 5, 6] $
- $ b_3 = [7, 8, 9] $
- $ b_4 = [10, 11, 12] $
- $ b_5 = [13, 14, 15] $
Therefore, $ \operatorname{median}([\operatorname{median}([1, 2, 3]), \operatorname{median}([4, 5, 6]), \operatorname{median}([7, 8, 9]), \operatorname{median}([10, 11, 12]), \operatorname{median}([13, 14, 15])]) = \operatorname{median}([2, 5, 8, 11, 14]) = 8 $ .