CF2035C Alya and Permutation

Description

Alya has been given a hard problem. Unfortunately, she is too busy running for student council. Please solve this problem for her. Given an integer $ n $ , construct a permutation $ p $ of integers $ 1, 2, \ldots, n $ that maximizes the value of $ k $ (which is initially $ 0 $ ) after the following process. Perform $ n $ operations, on the $ i $ -th operation ( $ i=1, 2, \dots, n $ ), - If $ i $ is odd, $ k=k\,\&\,p_i $ , where $ \& $ denotes the [bitwise AND operation](https://en.wikipedia.org/wiki/Bitwise_operation#AND). - If $ i $ is even, $ k=k\,|\,p_i $ , where $ | $ denotes the [bitwise OR operation](https://en.wikipedia.org/wiki/Bitwise_operation#OR).

Input Format

The first line contains a single integer $ t $ ( $ 1\le t\le 500 $ ) — the number of test cases. The only line of each test case contains a single integer $ n $ ( $ 5\le n\le 2 \cdot 10^5 $ ) — the length of the permutation. It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .

Output Format

For each test case, output the maximum value of $ k $ in the first line and output the permutation $ p_1, p_2,\ldots, p_n $ in the second line. If there are multiple such permutations, output any.

Explanation/Hint

For the first test case, the value of $ k $ is determined as follows: $ k = 0 $ initially. - On the $ 1 $ st operation, $ 1 $ is odd, so Alya sets $ k $ to be $ k\&p_1 = 0\&2 = 0 $ . - On the $ 2 $ nd operation, $ 2 $ is even, so Alya sets $ k $ to be $ k|p_2 = 0|1 = 1 $ . - On the $ 3 $ rd operation, $ 3 $ is odd, so Alya sets $ k $ to be $ k\&p_3 = 1\&3 = 1 $ . - On the $ 4 $ th operation, $ 4 $ is even, so Alya sets $ k $ to be $ k|p_4 = 1|4 = 5 $ . - On the $ 5 $ th operation, $ 5 $ is odd, so Alya sets $ k $ to be $ k\&p_5 = 5\&5 = 5 $ . The final value of $ k $ is $ 5 $ . It can be shown that the final value of $ k $ is at most $ 5 $ for all permutations of length $ 5 $ . Another valid output is $ [2, 3, 1, 4, 5] $ . For the second test case, the final value of $ k $ is $ 7 $ . It can be shown that the final value of $ k $ is at most $ 7 $ for all permutations of length $ 6 $ . Other valid outputs include $ [2, 4, 1, 6, 3, 5] $ and $ [5, 2, 6, 1, 3, 4] $ .