CF2043B Digits
Description
Artem wrote the digit $ d $ on the board exactly $ n! $ times in a row. So, he got the number $ dddddd \dots ddd $ (exactly $ n! $ digits).
Now he is curious about which odd digits from $ 1 $ to $ 9 $ divide the number written on the board.
Input Format
The first line contains a single integer $ t $ ( $ 1 \le t \le 100 $ ) — the number of test cases. The next $ t $ test cases follow.
Each test case consists of a single line containing two integers $ n $ and $ d $ ( $ 2 \le n \le 10^9 $ , $ 1 \le d \le 9 $ ).
Output Format
For each test case, output the odd digits in ascending order that divide the number written on the board.
Explanation/Hint
The factorial of a positive integer $ n $ ( $ n! $ ) is the product of all integers from $ 1 $ to $ n $ . For example, the factorial of $ 5 $ is $ 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120 $ .