CF2043D Problem about GCD
Description
Given three integers $ l $ , $ r $ , and $ G $ , find two integers $ A $ and $ B $ ( $ l \le A \le B \le r $ ) such that their greatest common divisor (GCD) equals $ G $ and the distance $ |A - B| $ is maximized.
If there are multiple such pairs, choose the one where $ A $ is minimized. If no such pairs exist, output "-1 -1".
Input Format
The first line contains a single integer $ t $ ( $ 1 \le t \le 10^3 $ ) — the number of test cases. Then, $ t $ test cases follow.
Each test case consists of a single line containing three integers $ l, r, G $ ( $ 1 \le l \le r \le 10^{18} $ ; $ 1 \le G \le 10^{18} $ ) — the range boundaries and the required GCD.
Output Format
For each test case, output two integers $ A $ and $ B $ — the solution to the problem, or "-1 -1" if no such pair exists.