CF2043E Matrix Transformation

Description

You are given two matrices $ A $ and $ B $ of size $ n \times m $ , filled with integers between $ 0 $ and $ 10^9 $ . You can perform the following operations on matrix $ A $ in any order and any number of times: - &=: choose two integers $ i $ and $ x $ ( $ 1 \le i \le n $ , $ x \ge 0 $ ) and replace each element in row $ i $ with the result of the bitwise AND operation between $ x $ and that element. Formally, for every $ j \in [1, m] $ , the element $ A_{i,j} $ is replaced with $ A_{i,j} \text{ \& } x $ ; - |=: choose two integers $ j $ and $ x $ ( $ 1 \le j \le m $ , $ x \ge 0 $ ) and replace each element in column $ j $ with the result of the bitwise OR operation between $ x $ and that element. Formally, for every $ i \in [1, n] $ , the element $ A_{i,j} $ is replaced with $ A_{i,j} \text{ | } x $ . The value of $ x $ may be chosen differently for different operations. Determine whether it is possible to transform matrix $ A $ into matrix $ B $ using the given operations any number of times (including zero).

Input Format

The first line contains a single integer $ t $ ( $ 1 \le t \le 100 $ ) — the number of test cases. Then, $ t $ test cases follow. Each test case is given as follows: - the first line contains two integers $ n $ and $ m $ ( $ 1 \le n, m \le 10^3 $ ; $ n \cdot m \le 10^3 $ ) — the dimensions of the matrices $ A $ and $ B $ ; - the following $ n $ lines describe the matrix $ A $ , where the $ i $ -th line contains $ m $ integers $ A_{i,1}, A_{i,2}, \dots, A_{i,m} $ ( $ 0 \le A_{i,j} \le 10^9 $ ); - the following $ n $ lines describe the matrix $ B $ , where the $ i $ -th line contains $ m $ integers $ B_{i,1}, B_{i,2}, \dots, B_{i,m} $ ( $ 0 \le B_{i,j} \le 10^9 $ ).

Output Format

For each test case, output Yes if it is possible to transform the matrix $ A $ into the matrix $ B $ ; otherwise, output No. Each letter can be output in any case, upper or lower.

Explanation/Hint

Let's consider the second set of input data and show a sequence of operations that transforms matrix $ A $ into matrix $ B $ : Initially, the matrix looks like this: $ \begin{bmatrix} 10&10\\ 42&42\\ \end{bmatrix} $ Apply an operation of the first type with parameters $ i = 1 $ and $ x = 0 $ . As a result, we get the matrix: $ \begin{bmatrix} 0&0\\ 42&42\\ \end{bmatrix} $ Apply an operation of the first type with parameters $ i = 2 $ and $ x = 0 $ . As a result, we get the matrix: $ \begin{bmatrix} 0&0\\ 0&0\\ \end{bmatrix} $ Apply an operation of the second type with parameters $ j = 1 $ and $ x = 21 $ . As a result, we get the matrix: $ \begin{bmatrix} 21&0\\ 21&0\\ \end{bmatrix} $ Apply an operation of the second type with parameters $ j = 2 $ and $ x = 21 $ . As a result, we get the matrix: $ \begin{bmatrix} 21&21\\ 21&21\\ \end{bmatrix} $ Thus, we have transformed matrix $ A $ into matrix $ B $ .