CF2044E Insane Problem

Description

Wave is given five integers $ k $ , $ l_1 $ , $ r_1 $ , $ l_2 $ , and $ r_2 $ . Wave wants you to help her count the number of ordered pairs $ (x, y) $ such that all of the following are satisfied: - $ l_1 \leq x \leq r_1 $ . - $ l_2 \leq y \leq r_2 $ . - There exists a non-negative integer $ n $ such that $ \frac{y}{x} = k^n $ .

Input Format

The first line contains an integer $ t $ ( $ 1 \leq t \leq 10^4 $ ) — the number of test cases. The only line of each test case contains five integers $ k $ , $ l_1 $ , $ r_1 $ , $ l_2 $ , and $ r_2 $ ( $ 2 \leq k \leq 10^9, 1 \leq l_1 \leq r_1 \leq 10^9, 1 \leq l_2 \leq r_2 \leq 10^9 $ ).

Output Format

For each test case, output the number of matching ordered pairs $ (x, y) $ on a new line.

Explanation/Hint

In the third test case, the matching ordered pairs are the following: - $ (5,15) $ - $ (5,45) $ - $ (6,18) $ - $ (6,54) $ - $ (7,21) $ - $ (7,63) $ In the fourth test case, the only valid ordered pair is $ (1,1\,000\,000\,000) $