CF2051E Best Price
题目描述
伯兰德最大的商店收到了一批圣诞树,并已有 $n$ 位顾客前来欲购这些树。在销售启动前,商店需要统一为每棵树定价。为了合理制定价格,商店掌握了关于每位顾客的一些信息。
对于第 $i$ 位顾客,有两个已知整数 $a_i$ 和 $b_i$,它们定义了顾客的购物行为:
- 如果价格不超过 $a_i$,顾客将购买一棵树并给出正面评价;
- 如果价格超过 $a_i$ 但不超过 $b_i$,顾客仍会购买,但会留下负面评价;
- 如果价格高于 $b_i$,则顾客将不会购买。
在负面评价不超过 $k$ 条的前提下,你的任务是帮助商店计算出最大的可能收益。
输入格式
第一行是一个整数 $t$($1 \le t \le 10^4$),表示测试用例的数量。
接下来的每个测试用例,第一行包含两个整数 $n$ 和 $k$($1 \le n \le 2 \cdot 10^5$,$0 \le k \le n$),分别表示顾客数量和允许的最大负面评价数。
第二行是 $n$ 个整数 $a_1, a_2, \dots, a_n$($1 \le a_i \le 2 \cdot 10^9$),分别表示每位顾客给出正面评价的最高价格。
第三行是 $n$ 个整数 $b_1, b_2, \dots, b_n$($1 \le b_i \le 2 \cdot 10^9$ 且 $a_i < b_i$),表示顾客购买的最高价格。
输入的附加限制是:所有测试用例中 $n$ 的总和不超过 $2 \cdot 10^5$。
输出格式
对于每一个测试用例,输出一个整数,即在满足负面评价不超过 $k$ 条的情况下,商店可能获得的最大收益。
说明/提示
考虑以下例子:
- 在第一个测试用例中,如果价格设为 $1$,两位顾客都会各买一棵树且没有负面评价。
- 在第二个测试用例中,如果价格设为 $5$,顾客会购买一棵树且给出一条负面评价。
- 在第三个测试用例中,如果价格定为 $3$,所有顾客会购买且将收到两条负面评价。
- 在第四个测试用例中,价格定为 $7$ 时,有两位顾客购买,一条负面评价。
**本翻译由 AI 自动生成**