CF2065D Skibidus and Sigma
Description
Let's denote the score of an array $ b $ with $ k $ elements as $ \sum_{i=1}^{k}\left(\sum_{j=1}^ib_j\right) $ . In other words, let $ S_i $ denote the sum of the first $ i $ elements of $ b $ . Then, the score can be denoted as $ S_1+S_2+\ldots+S_k $ .
Skibidus is given $ n $ arrays $ a_1,a_2,\ldots,a_n $ , each of which contains $ m $ elements. Being the sigma that he is, he would like to concatenate them in any order to form a single array containing $ n\cdot m $ elements. Please find the maximum possible score Skibidus can achieve with his concatenated array!
Formally, among all possible permutations $ ^{\text{∗}} $ $ p $ of length $ n $ , output the maximum score of $ a_{p_1} + a_{p_2} + \dots + a_{p_n} $ , where $ + $ represents concatenation $ ^{\text{†}} $ .
$ ^{\text{∗}} $ A permutation of length $ n $ contains all integers from $ 1 $ to $ n $ exactly once.
$ ^{\text{†}} $ The concatenation of two arrays $ c $ and $ d $ with lengths $ e $ and $ f $ respectively (i.e. $ c + d $ ) is $ c_1, c_2, \ldots, c_e, d_1, d_2, \ldots d_f $ .
Input Format
The first line contains an integer $ t $ ( $ 1 \leq t \leq 10^4 $ ) — the number of test cases.
The first line of each test case contains two integers $ n $ and $ m $ ( $ 1 \leq n \cdot m \leq 2 \cdot 10^5 $ ) — the number of arrays and the length of each array.
The $ i $ 'th of the next $ n $ lines contains $ m $ integers $ a_{i,1}, a_{i,2}, \ldots, a_{i,m} $ ( $ 1 \leq a_{i,j} \leq 10^6 $ ) — the elements of the $ i $ 'th array.
It is guaranteed that the sum of $ n \cdot m $ over all test cases does not exceed $ 2 \cdot 10^5 $ .
Output Format
For each test case, output the maximum score among all possible permutations $ p $ on a new line.
Explanation/Hint
For the first test case, there are two possibilities for $ p $ :
- $ p = [1, 2] $ . Then, $ a_{p_1} + a_{p_2} = [4, 4, 6, 1] $ . Its score is $ 4+(4+4)+(4+4+6)+(4+4+6+1)=41 $ .
- $ p = [2, 1] $ . Then, $ a_{p_1} + a_{p_2} = [6, 1, 4, 4] $ . Its score is $ 6+(6+1)+(6+1+4)+(6+1+4+4)=39 $ .
The maximum possible score is $ 41 $ .
In the second test case, one optimal arrangement of the final concatenated array is $ [4,1,2,1,2,2,2,2,3,2,1,2] $ . We can calculate that the score is $ 162 $ .