CF2071D1 Infinite Sequence (Easy Version)

Description

This is the easy version of the problem. The difference between the versions is that in this version, $ l=r $ . You can hack only if you solved all versions of this problem. You are given a positive integer $ n $ and the first $ n $ terms of an infinite binary sequence $ a $ , which is defined as follows: - For $ m>n $ , $ a_m = a_1 \oplus a_2 \oplus \ldots \oplus a_{\lfloor \frac{m}{2} \rfloor} $ $ ^{\text{∗}} $ . Your task is to compute the sum of elements in a given range $ [l, r] $ : $ a_l + a_{l + 1} + \ldots + a_r $ . $ ^{\text{∗}} $ $ \oplus $ denotes the bitwise XOR operation.

Input Format

Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10^4 $ ). The description of the test cases follows. The first line of each test case contains three integers $ n $ , $ l $ , and $ r $ ( $ 1 \le n \le 2 \cdot 10^5 $ , $ 1 \le l=r\le 10^{18} $ ). The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ \color{red}{a_i \in \{0, 1\}} $ ) — the first $ n $ terms of the sequence $ a $ . It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .

Output Format

For each test case, output a single integer — the sum of elements in the given range.

Explanation/Hint

In the first test case, the sequence $ a $ is equal to $ $$$[\underline{\color{red}{1}}, 1, 1, 0, 0, 1, 1, 1, 1, 1, \ldots] $ $ where $ l = 1 $ , and $ r = 1 $ . The sum of elements in the range $ \[1, 1\] $ is equal to $ $ a_1 = 1. $ $

In the second test case, the sequence $ a $ is equal to $ $ [\color{red}{1}, \color{red}{0}, \underline{1}, 1, 1, 0, 0, 1, 1, 0, \ldots] $ $ where $ l = 3 $ , and $ r = 3 $ . The sum of elements in the range $ \[3, 3\] $ is equal to $ $ a_3 = 1. $ $$$