CF2074C XOR and Triangle

Description

This time, the pink soldiers have given you an integer $ x $ ( $ x \ge 2 $ ). Please determine if there exists a positive integer $ y $ that satisfies the following conditions. - $ y $ is strictly less than $ x $ . - There exists a non-degenerate triangle $ ^{\text{∗}} $ with side lengths $ x $ , $ y $ , $ x \oplus y $ . Here, $ \oplus $ denotes the [bitwise XOR operation](https://en.wikipedia.org/wiki/Bitwise_operation#XOR). Additionally, if there exists such an integer $ y $ , output any. $ ^{\text{∗}} $ A triangle with side lengths $ a $ , $ b $ , $ c $ is non-degenerate when $ a+b > c $ , $ a+c > b $ , $ b+c > a $ .

Input Format

Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 2000 $ ). The description of the test cases follows. The only line of each test case contains a single integer $ x $ ( $ 2 \le x \le 10^9 $ ).

Output Format

For each test case, print one integer on a separate line. The integer you must output is as follows: - If there exists an integer $ y $ satisfying the conditions, output the value of $ y $ ( $ 1 \le y < x $ ); - Otherwise, output $ -1 $ . If there exist multiple integers that satisfy the conditions, you may output any.

Explanation/Hint

In the first test case, there exists a non-degenerate triangle with side lengths $ 3 $ , $ 5 $ , and $ 3 \oplus 5 = 6 $ . Therefore, $ y=3 $ is a valid answer. In the second test case, $ 1 $ is the only possible candidate for $ y $ , but it cannot make a non-degenerate triangle. Therefore, the answer is $ -1 $ .