CF2104B Move to the End

Description

You are given an array $ a $ consisting of $ n $ integers. For every integer $ k $ from $ 1 $ to $ n $ , you have to do the following: 1. choose an arbitrary element of $ a $ and move it to the right end of the array (you can choose the last element, then the array won't change); 2. print the sum of $ k $ last elements of $ a $ ; 3. move the element you've chosen on the first step to its original position (restore the original array $ a $ ). For every $ k $ , you choose the element which you move so that the value you print is the maximum possible. Calculate the value you print for every $ k $ .

Input Format

The first line contains one integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. Each test case consists of two lines: - the first line contains one integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ); - the second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^9 $ ). Additional constraint on the input: the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .

Output Format

For each test case, print $ n $ integers. The $ i $ -th of these integers should be equal to the maximum value you can print if $ k=i $ .

Explanation/Hint

Let's consider the first test case from the statement: - when $ k = 1 $ , you can move the $ 6 $ -th element to the end, the array becomes $ [13, 5, 10, 14, 8, 13, 15] $ , and the value you print is $ 15 $ ; - when $ k = 2 $ , you can move the $ 6 $ -th element to the end, the array becomes $ [13, 5, 10, 14, 8, 13, 15] $ , and the value you print is $ 13 + 15 = 28 $ ; - when $ k = 3 $ , you can move the $ 4 $ -th element to the end, the array becomes $ [13, 5, 10, 8, 15, 13, 14] $ , and the value you print is $ 15 + 13 + 14 = 42 $ ; - when $ k = 4 $ , you can move the $ 5 $ -th element to the end, the array becomes $ [13, 5, 10, 14, 15, 13, 8] $ , and the value you print is $ 14 + 15 + 13 + 8 = 50 $ ; - when $ k = 5 $ , you can move the $ 1 $ -st element to the end, the array becomes $ [5, 10, 14, 8, 15, 13, 13] $ , and the value you print is $ 14 + 8 + 15 + 13 + 13 = 63 $ ; - when $ k = 6 $ , you can move the $ 1 $ -st element to the end, the array becomes $ [5, 10, 14, 8, 15, 13, 13] $ , and the value you print is $ 10 + 14 + 8 + 15 + 13 + 13 = 73 $ ; - when $ k = 7 $ , you can move the $ 6 $ -th element to the end, the array becomes $ [13, 5, 10, 14, 8, 13, 15] $ , and the value you print is $ 13 + 5 + 10 + 14 + 8 + 13 + 15 = 78 $ .