CF2108A Permutation Warm-Up
Description
For a permutation $ p $ of length $ n ^{\text{∗}} $ , we define the function:
$$ f(p) = \sum_{i=1}^{n} \lvert p_i - i \rvert $$
You are given a number $ n $ . You need to compute how many **distinct** values the function $ f(p) $ can take when considering **all possible** permutations of the numbers from $ 1 $ to $ n $ .
$ ^{\text{∗}} $ A permutation of length $ n $ is an array consisting of $ n $ distinct integers from $ 1 $ to $ n $ in arbitrary order. For example, $ [2,3,1,5,4] $ is a permutation, but $ [1,2,2] $ is not a permutation ($ 2 $ appears twice in the array), and $ [1,3,4] $ is also not a permutation ($ n=3 $ but there is $ 4$ in the array).
Input Format
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ($ 1 \le t \le 100 $). The description of the test cases follows.
The first line of each test case contains an integer $ n $ ($ 1 \leq n \leq 500 $) — the number of numbers in the permutations.
Output Format
For each test case, output a single integer — the number of distinct values of the function $ f(p) $ for the given length of permutations.
Explanation/Hint
Consider the first two examples of the input.
For $ n = 2 $, there are only $ 2 $ permutations — $ [1, 2] $ and $ [2, 1] $. $ f([1, 2]) = \lvert 1 - 1 \rvert + \lvert 2 - 2 \rvert = 0 $, $ f([2, 1]) = \lvert 2 - 1 \rvert + \lvert 1 - 2 \rvert = 1 + 1 = 2 $. Thus, the function takes $ 2 $ distinct values.
For $ n=3 $, there are already $ 6 $ permutations: $ [1, 2, 3] $, $ [1, 3, 2] $, $ [2, 1, 3] $, $ [2, 3, 1] $, $ [3, 1, 2] $, $ [3, 2, 1] $, the function values of which will be $ 0, 2, 2, 4, 4 $, and $ 4 $ respectively, meaning there are a total of $ 3 $ values.