CF2112C Coloring Game
题目描述
Alice 和 Bob 使用一个长度为 $n$ 的数列 $a$ 进行游戏。
初始时,任何数列中的数字都没有被染色。首先,Alice 选择 $3$ 个 $a$ 中的元素并将它们染为红色。然后 Bob 将选择一个任意元素并将它染为蓝色(如果这个元素原本是红色的,那么蓝色将覆盖掉红色)。Alice 获胜当且仅当剩余的红色的数字之和严格大于蓝色的数字。
你需要计算 Alice 有多少种选择 $3$ 个元素染色的方案使得无论 Bob 如何操作 Alive 都将获胜。
输入格式
多组数据。第一行一个整数 $t$ ($1\le t\le 1000$) 表示数据组数。
对于每组数据,第一行一个整数 $n$ ($3\le n\le 5000$)。\
第二行 $n$ 个整数 $a_1,a_2,\cdots,a_n$ ($1\le a_1\le a_2\le \cdots\le a_n\le 10^5$)。
保证单个测试点内 $\sum n\le 5000$。
输出格式
对于每组数据,输出一行一个整数表示答案。
说明/提示
**样例解释**
对于前两组数据,无论 Alice 怎么选择元素,Bob 总有办法选择元素使得 Alice 不能获胜。
对于第三组数据,Alice 可以选择任意的三个元素。如果 Bob 选择对红色的某个元素染色,红色数字的和将为 $14$,蓝色数字的和将为 $7$;如果 Bob 选择对某个未染色的元素染色,红色数字的和将为 $21$,蓝色数字的和将为 $7$。
对于第四组数据,Alice 可以选择 $a_1,a_3,a_4$ 或 $a_2,a_3,a_4$。