CF2115B Gellyfish and Camellia Japonica
Description
Gellyfish has an array of $ n $ integers $ c_1, c_2, \ldots, c_n $ . In the beginning, $ c = [a_1, a_2, \ldots, a_n] $ .
Gellyfish will make $ q $ modifications to $ c $ .
For $ i = 1,2,\ldots,q $ , Gellyfish is given three integers $ x_i $ , $ y_i $ , and $ z_i $ between $ 1 $ and $ n $ . Then Gellyfish will set $ c_{z_i} := \min(c_{x_i}, c_{y_i}) $ .
After the $ q $ modifications, $ c = [b_1, b_2, \ldots, b_n] $ .
Now Flower knows the value of $ b $ and the value of the integers $ x_i $ , $ y_i $ , and $ z_i $ for all $ 1 \leq i \leq q $ , but she doesn't know the value of $ a $ .
Flower wants to find any possible value of the array $ a $ or report that no such $ a $ exists.
If there are multiple possible values of the array $ a $ , you may output any of them.
Input Format
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10^4 $ ). The description of the test cases follows.
The first line of each test case contains two integers $ n $ and $ q $ ( $ 1 \leq n, q \leq 3 \cdot 10^5 $ ) — the size of the array and the number of modifications.
The second line of each test case contains $ n $ integers $ b_1, b_2, \ldots, b_n $ ( $ 1 \leq b_i \leq 10^9 $ ) — the value of the array $ c $ after the $ q $ modifications.
The following $ q $ lines each contain three integers $ x_i $ , $ y_i $ , and $ z_i $ ( $ 1 \leq x_i, y_i, z_i \leq n $ ) — describing the $ i $ -th modification.
It is guaranteed that the sum of $ n $ and the sum of $ q $ over all test cases does not exceed $ 3 \cdot 10^5 $ .
Output Format
For each test case, if $ a $ exists, output $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 0 \leq a_i \leq 10^9 $ ) in a single line. Otherwise, output "-1" in a single line.
If there are multiple solutions, print any of them.
Explanation/Hint
In the first test case, based on the given sequence of modifications, we know that $ b_1 = a_1 $ and $ b_2 = \min(a_1, a_2) $ . Therefore, it is necessary that $ b_2 \leq b_1 $ . However, for the given $ b $ , we have $ b_1