CF2116B Gellyfish and Baby's Breath
Description
Flower gives Gellyfish two permutations $ ^{\text{∗}} $ of $ [0, 1, \ldots, n-1] $ : $ p_0, p_1, \ldots, p_{n-1} $ and $ q_0, q_1, \ldots, q_{n-1} $ .
Now Gellyfish wants to calculate an array $ r_0,r_1,\ldots,r_{n-1} $ through the following method:
- For all $ i $ ( $ 0 \leq i \leq n-1 $ ), $ r_i = \max\limits_{j=0}^{i} \left(2^{p_j} + 2^{q_{i-j}} \right) $
But since Gellyfish is very lazy, you have to help her figure out the elements of $ r $ .
Since the elements of $ r $ are very large, you are only required to output the elements of $ r $ modulo $ 998\,244\,353 $ .
$ ^{\text{∗}} $ An array $ b $ is a permutation of an array $ a $ if $ b $ consists of the elements of $ a $ in arbitrary order. For example, $ [4,2,3,4] $ is a permutation of $ [3,2,4,4] $ while $ [1,2,2] $ is not a permutation of $ [1,2,3] $ .
Input Format
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10^4 $ ). The description of the test cases follows.
The first line of each test case contains a single integer $ n $ ( $ 1 \leq n \leq 10^5 $ ).
The second line of each test case contains $ n $ integers $ p_0, p_1, \ldots,p_{n-1} $ ( $ 0 \leq p_i < n $ ).
The third line of each test case contains $ n $ integers $ q_0, q_1, \ldots,q_{n-1} $ ( $ 0 \leq q_i < n $ ).
It is guaranteed that both $ p $ and $ q $ are permutations of $ [0, 1, \ldots, n-1] $ .
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 10^5 $ .
Output Format
For each test case, output $ n $ integers $ r_0, r_1, \ldots, r_{n-1} $ in a single line, modulo $ 998\,244\,353 $ .
Explanation/Hint
In the first test case:
- $ r_0 = 2^{p_0} + 2^{q_0} = 1+2=3 $
- $ r_1 = \max(2^{p_0} + 2^{q_1}, 2^{p_1} + 2^{q_0}) = \max(1+4, 4+2) = 6 $
- $ r_2 = \max(2^{p_0} + 2^{q_2}, 2^{p_1}+2^{q_1}, 2^{p_2}+2^{q_0}) = (1+1, 4+4, 2+2) = 8 $