CF2151A Incremental Subarray
Description
[Schtiffles - Marbl](https://soundcloud.com/schtiffles/marbl)
⠀
James is learning numbers, and he is having fun writing them on a huge blackboard, from left to right.
- At the beginning, James writes the number $ 1 $ .
- Right after, James writes $ 1 $ again, and then $ 2 $ .
- Then James writes $ 1 $ , $ 2 $ , $ 3 $ .
- $ \ldots $
- In the end, James writes $ 1 $ , $ 2 $ , $ 3 $ , $ \ldots $ , $ n $ .
For example, for $ n = 5 $ , the numbers written by James make the array $ b = [1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5] $ .
James has a list of favorite numbers $ a_1, a_2, \ldots, a_m $ , and he wants to calculate how many subarrays of the array $ b $ are equal to $ a_1, a_2, \ldots, a_m $ . $ ^{\text{∗}} $
James is already sure that $ a_1, a_2, \ldots, a_m $ is a subarray of $ b $ , so the answer is at least $ 1 $ .
$ ^{\text{∗}} $ The subarrays of an array $ [v_1, v_2, \ldots, v_k] $ are generated as follows: for each $ l, r $ such that $ 1 \leq l \leq r \leq k $ , the array $ [v_l, v_{l+1}, \ldots, v_r] $ is a subarray. So there are $ k(k+1)/2 $ subarrays in total, and some of them may be equal.
Input Format
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 500 $ ). The description of the test cases follows.
The first line of each test case contains two integers $ n $ and $ m $ ( $ 1 \leq n \leq 10^5 $ , $ 1 \leq m \leq 200 $ ) — the maximum number written by James, and the length of the array $ a_1, a_2, \ldots, a_m $ .
The second line of each test case contains $ m $ integers $ a_1, a_2, \ldots, a_m $ ( $ 1 \leq a_i \leq 10^5 $ ) — James' favorite numbers.
It is guaranteed that for the given input, the answer is always at least $ 1 $ .
Note that there are no constraints on the sum of $ n $ and $ m $ over all test cases.
Output Format
For each test case, output a single line containing an integer: the number of subarrays of the array $ b $ which are equal to $ a_1, a_2, \ldots, a_m $ .
Explanation/Hint
In the first test case, the blackboard contains the numbers
$$$
b = [1, 1, 2, 1, 2, 3, 1, 2, 3, 4]
$$$
and James has only one favorite number: the number $ 1 $ . There are $ 4 $ subarrays of $ b $ equal to $ [1] $ (highlighted in red):
- $ [\color{red}{1}, 1, 2, 1, 2, 3, 1, 2, 3, 4] $ ;
- $ [1, \color{red}{1}, 2, 1, 2, 3, 1, 2, 3, 4] $ ;
- $ [1, 1, 2, \color{red}{1}, 2, 3, 1, 2, 3, 4] $ ;
- $ [1, 1, 2, 1, 2, 3, \color{red}{1}, 2, 3, 4] $ .
In the second test case, the blackboard contains the numbers
$$$
b = [1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5]
$$$
and James's list of favorite numbers is $ [1, 2, 3] $ . There are $ 3 $ subarrays of $ b $ equal to $ [1, 2, 3] $ (highlighted in red):
- $ [1, 1, 2, \color{red}{1, 2, 3}, 1, 2, 3, 4, 1, 2, 3, 4, 5] $ ;
- $ [1, 1, 2, 1, 2, 3, \color{red}{1, 2, 3}, 4, 1, 2, 3, 4, 5] $ ;
- $ [1, 1, 2, 1, 2, 3, 1, 2, 3, 4, \color{red}{1, 2, 3}, 4, 5] $ .
In the third test case, the blackboard contains the numbers
$$$
b = [1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6]
$$$
and James's list of favorite numbers is $ [3, 1, 2, 3, 4, 1] $ . There is only $ 1 $ subarray of $ b $ equal to $ [3, 1, 2, 3, 4, 1] $ (highlighted in red):
- $ [1, 1, 2, 1, 2, \color{red}{3, 1, 2, 3, 4, 1}, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6] $ .