CF2175B XOR Array
Description
You are given three integers $ n $ , $ l $ , and $ r $ .
You need to generate an array $ a $ of positive ( $ 1 \leq a_i \leq 10^9 $ ) integers of length $ n $ . Let $ f(x, y) $ , for $ 1 \le x \le y \le n $ , be the bitwise XOR $ ^{\text{∗}} $ value $ a_x \oplus a_{x+1} \oplus \ldots \oplus a_y $ . You need to make sure that
$$$
\begin{cases} f(x, y) = 0\quad \text{when }x = l\text{ and }y = r; \text{and}\\ f(x, y) \ne 0\quad \text{when }x \ne l \text{ or } y \ne r. \end{cases}
$$$
$ ^{\text{∗}} $ $ \oplus $ denotes the [bitwise XOR operation](https://en.wikipedia.org/wiki/Bitwise_operation#XOR).
Input Format
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10^4 $ ). The description of the test cases follows.
The only line of each test case contains three integers $ n $ , $ l $ , and $ r $ ( $ 2 \leq n \leq 4\cdot 10^5 $ , $ 1 \leq l \lt r \leq n $ ).
It is guaranteed that the sum of $ n $ across all test cases does not exceed $ 5\cdot 10^5 $ .
Output Format
For each test case, print a single line containing $ n $ integers $ a_1, a_2, \ldots a_n $ .
We can show that an answer always exists. If there are multiple solutions, print any of them.
Explanation/Hint
In the first test case, $ f(1, 3) = 9 \oplus 8 \oplus 1 = 0 $ , while all other non-empty subarrays have non-zero bitwise XOR:
- $ f(1, 2) = 9 \oplus 8 = 1 \ne 0 $ ,
- $ f(2, 3) = 8 \oplus 1 = 9 \ne 0 $ ,
- $ f(1, 1) = 9 \ne 0 $ ,
- $ f(2, 2) = 8 \ne 0 $ ,
- $ f(3, 3) = 1 \ne 0 $ .
In the second test case, $ 2 \oplus 7 \oplus 5 = 0 $ , while, for example, $ 7 \oplus 5 \oplus 4 = 6 \ne 0 $ .