CF2185A Perfect Root

Description

A positive integer $ x $ is a perfect root if there exists an integer $ y $ such that $ \sqrt{y} = x $ . For example, $ 5 $ is a perfect root because $ \sqrt{25} = 5 $ . For each test case, output $ n $ distinct perfect roots. Note that the values only need to be distinct within each test case; you can use the same value in different test cases.

Input Format

The first line of the input contains a single integer $ t $ ( $ 1 \leq t \leq 20 $ ) — the number of test cases. The only line of each test case contains an integer $ n $ ( $ 1 \leq n \leq 20 $ ) — the number of perfect roots to output.

Output Format

For each test case, output $ n $ distinct perfect roots. Each perfect root $ x $ must be in the range $ 1 \leq x \leq 10^9 $ .

Explanation/Hint

For the first test case: - $ 1 $ is a perfect root because $ \sqrt{1} = 1 $ . For the second test case: - $ 2 $ is a perfect root because $ \sqrt{4} = 2 $ . - $ 4 $ is a perfect root because $ \sqrt{16} = 4 $ .