CF2185A Perfect Root
Description
A positive integer $ x $ is a perfect root if there exists an integer $ y $ such that $ \sqrt{y} = x $ . For example, $ 5 $ is a perfect root because $ \sqrt{25} = 5 $ .
For each test case, output $ n $ distinct perfect roots. Note that the values only need to be distinct within each test case; you can use the same value in different test cases.
Input Format
The first line of the input contains a single integer $ t $ ( $ 1 \leq t \leq 20 $ ) — the number of test cases.
The only line of each test case contains an integer $ n $ ( $ 1 \leq n \leq 20 $ ) — the number of perfect roots to output.
Output Format
For each test case, output $ n $ distinct perfect roots. Each perfect root $ x $ must be in the range $ 1 \leq x \leq 10^9 $ .
Explanation/Hint
For the first test case:
- $ 1 $ is a perfect root because $ \sqrt{1} = 1 $ .
For the second test case:
- $ 2 $ is a perfect root because $ \sqrt{4} = 2 $ .
- $ 4 $ is a perfect root because $ \sqrt{16} = 4 $ .