# Cats Transport

## 题意翻译

Zxr960115 是一个大农场主。 他养了 \$m\$ 只可爱的猫子,雇佣了 \$p\$ 个铲屎官。这里有一条又直又长的道路穿过了农场，有 \$n\$ 个山丘坐落在道路周围，编号自左往右从 \$1\$ 到 \$n\$。山丘 \$i\$ 与山丘 \$i-1\$ 的距离是 \$D_i\$ 米。铲屎官们住在 \$1\$ 号山丘。 一天，猫子们外出玩耍。猫子 \$i\$ 去山丘 \$H_i\$ 游玩，在 \$T_i\$ 时间结束他的游玩，然后在山丘 \$H_i\$ 傻等铲屎官。铲屎官们必须把所有的猫子带上。每个铲屎官直接从 \$H_1\$ 走到 \$H_n\$，中间不停下，可以认为不花费时间的把游玩结束的猫子带上。每个铲屎官的速度为一米每单位时间，并且足够强壮来带上任意数量的猫子。 举个栗子，假装我们有两个山丘( \$D_2=1\$ )，有一只猫子，他想去山丘 \$2\$ 玩到时间 \$3\$。然后铲屎官如果在时间 \$2\$ 或者时间 \$3\$ 从 \$1\$ 号山丘出发，他就能抱走猫子。如果他在时间 \$1\$ 出发那么就不行(猫子还在玩耍)。如果铲屎官在时间 \$2\$ 出发，猫子就不用等他（\$\Delta T=0\$）。如果他在时间 \$3\$ 出发，猫子就要等他 \$1\$ 个单位时间。 你的任务是安排每个铲屎官出发的时间(可以从 0 时刻之前出发），最小化猫子们等待的时间之和。 对于全部的数据，满足 \$2\le n\le10^5\$，\$1\le m\le10^5\$，\$1\le p\le100\$，\$1\le D_i<10^4\$，\$1\le H_i\le n\$，\$0\le t\le10^9\$。

## 题目描述

Zxr960115 is owner of a large farm. He feeds \$ m \$ cute cats and employs \$ p \$ feeders. There's a straight road across the farm and \$ n \$ hills along the road, numbered from 1 to \$ n \$ from left to right. The distance between hill \$ i \$ and \$ (i-1) \$ is \$ d_{i} \$ meters. The feeders live in hill 1. One day, the cats went out to play. Cat \$ i \$ went on a trip to hill \$ h_{i} \$ , finished its trip at time \$ t_{i} \$ , and then waited at hill \$ h_{i} \$ for a feeder. The feeders must take all the cats. Each feeder goes straightly from hill 1 to \$ n \$ without waiting at a hill and takes all the waiting cats at each hill away. Feeders walk at a speed of 1 meter per unit time and are strong enough to take as many cats as they want. For example, suppose we have two hills \$ (d_{2}=1) \$ and one cat that finished its trip at time 3 at hill 2 \$ (h_{1}=2) \$ . Then if the feeder leaves hill 1 at time 2 or at time 3, he can take this cat, but if he leaves hill 1 at time 1 he can't take it. If the feeder leaves hill 1 at time 2, the cat waits him for 0 time units, if the feeder leaves hill 1 at time 3, the cat waits him for 1 time units. Your task is to schedule the time leaving from hill 1 for each feeder so that the sum of the waiting time of all cats is minimized.

## 输入输出格式

### 输入格式

The first line of the input contains three integers \$n,m,p\$ \$(2 \le n\le 10^5,1 \le m \le 10^5, 1\le p \le 100)\$. The second line contains \$n-1\$ positive integers \$d_{2},d_{3},...,d_{n}\$ \$(1 \le d_{i} < 10^{4}) .\$ Each of the next \$m\$ lines contains two integers \$h_i\$ and \$t_i\$ \$(1 \le h_i \le n,0 \le t_i \le 10^9)\$.

### 输出格式

Output an integer, the minimum sum of waiting time of all cats. Please, do not write the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.

## 输入输出样例

### 输入样例 #1

``````4 6 2
1 3 5
1 0
2 1
4 9
1 10
2 10
3 12
``````

### 输出样例 #1

``````3
``````