CF622D Optimal Number Permutation

Description

You have array $ a $ that contains all integers from $ 1 $ to $ n $ twice. You can arbitrary permute any numbers in $ a $ . Let number $ i $ be in positions $ x_{i},y_{i} $ ( $ x_{i} < y_{i} $ ) in the permuted array $ a $ . Let's define the value $ d_{i}=y_{i}-x_{i} $ — the distance between the positions of the number $ i $ . Permute the numbers in array $ a $ to minimize the value of the sum $s=\sum_{i=1}^n (n-i)\cdot|d_i+i-n|$

Input Format

The only line contains integer $ n $ ( $ 1 \le n \le 5 \cdot 10^{5} $ ).

Output Format

Print $ 2n $ integers — the permuted array $ a $ that minimizes the value of the sum $ s $ .