# Complicated GCD

## 题意翻译

【问题描述】 给你若干个整数，它们是a,a+1,a+2,…,b，请求出它们的最大公约数，即 gcd(a, a+1, a+2, …, b)。 【输入格式】 一行，包含两个整数a和 b（1<=a<=b<=10^100）。 【输出格式】 一个整数，表示从a到b所有整数的最大公约数。 【输入样例1】 1 2 【输出样例1】 1 【输入样例2】 61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576 【输出样例2】 61803398874989484820458683436563811772030917980576

## 题目描述

Greatest common divisor \$ GCD(a,b) \$ of two positive integers \$ a \$ and \$ b \$ is equal to the biggest integer \$ d \$ such that both integers \$ a \$ and \$ b \$ are divisible by \$ d \$ . There are many efficient algorithms to find greatest common divisor \$ GCD(a,b) \$ , for example, Euclid algorithm. Formally, find the biggest integer \$ d \$ , such that all integers \$ a,a+1,a+2,...,b \$ are divisible by \$ d \$ . To make the problem even more complicated we allow \$ a \$ and \$ b \$ to be up to googol, \$ 10^{100} \$ — such number do not fit even in 64-bit integer type!

## 输入输出格式

### 输入格式

The only line of the input contains two integers \$ a \$ and \$ b \$ ( \$ 1<=a<=b<=10^{100} \$ ).

### 输出格式

Output one integer — greatest common divisor of all integers from \$ a \$ to \$ b \$ inclusive.

## 输入输出样例

### 输入样例 #1

``````1 2
``````

### 输出样例 #1

``````1
``````

### 输入样例 #2

``````61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576
``````

### 输出样例 #2

``````61803398874989484820458683436563811772030917980576
``````