Two Arithmetic Progressions

题意翻译

已知$x$ $mod$ $a_{1}=b_{1}$,$x$ $mod$ $a_{2}=b_{2}$,求在$[l,r]$之间有多少个解。

题目描述

You are given two arithmetic progressions: $ a_{1}k+b_{1} $ and $ a_{2}l+b_{2} $ . Find the number of integers $ x $ such that $ L<=x<=R $ and $ x=a_{1}k'+b_{1}=a_{2}l'+b_{2} $ , for some integers $ k',l'>=0 $ .

输入输出格式

输入格式


The only line contains six integers $ a_{1},b_{1},a_{2},b_{2},L,R $ ( $ 0&lt;a_{1},a_{2}<=2·10^{9},-2·10^{9}<=b_{1},b_{2},L,R<=2·10^{9},L<=R $ ).

输出格式


Print the desired number of integers $ x $ .

输入输出样例

输入样例 #1

2 0 3 3 5 21

输出样例 #1

3

输入样例 #2

2 4 3 0 6 17

输出样例 #2

2