# Vladik and fractions

## 题意翻译

**题目描述** 请找出一组合法的解使得$\frac {1}{x} + \frac{1}{y} + \frac {1}{z} = \frac {2}{n}$成立 其中$x,y,z$为正整数并且互不相同 **输入** 一个整数$n$ **输出** 一组合法的解$x, y ,z$,用空格隔开 若不存在合法的解，输出$-1$ **数据范围** 对于$100$%的数据满足$n \leq 10^4$ 要求答案中$x,y,z \leq 2* 10^{9}$ 感谢@Michael_Bryant 提供的翻译

## 题目描述

Vladik and Chloe decided to determine who of them is better at math. Vladik claimed that for any positive integer $n$ he can represent fraction ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF743C/98fe6e67c0215dd9544c203cfb728334ac03fc69.png) as a sum of three distinct positive fractions in form ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF743C/140afc1972028e64ad54d4357592e925861bdf13.png). Help Vladik with that, i.e for a given $n$ find three distinct positive integers $x$ , $y$ and $z$ such that ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF743C/388f8aea1d0cb4eefcbda4cfdf528ffa9edb155f.png). Because Chloe can't check Vladik's answer if the numbers are large, he asks you to print numbers not exceeding $10^{9}$ . If there is no such answer, print -1.

## 输入输出格式

### 输入格式

The single line contains single integer $n$ ( $1<=n<=10^{4}$ ).

### 输出格式

If the answer exists, print $3$ distinct numbers $x$ , $y$ and $z$ ( $1<=x,y,z<=10^{9}$ , $x≠y$ , $x≠z$ , $y≠z$ ). Otherwise print -1. If there are multiple answers, print any of them.

## 输入输出样例

### 输入样例 #1

3


### 输出样例 #1

2 7 42


### 输入样例 #2

7


### 输出样例 #2

7 8 56