CF86A Reflection
Description
For each positive integer $ n $ consider the integer $ ψ(n) $ which is obtained from $ n $ by replacing every digit $ a $ in the decimal notation of $ n $ with the digit $ (9-a) $ . We say that $ ψ(n) $ is the reflection of $ n $ . For example, reflection of $ 192 $ equals $ 807 $ . Note that leading zeros (if any) should be omitted. So reflection of $ 9 $ equals $ 0 $ , reflection of $ 91 $ equals $ 8 $ .
Let us call the weight of the number the product of the number and its reflection. Thus, the weight of the number $ 10 $ is equal to $ 10·89=890 $ .
Your task is to find the maximum weight of the numbers in the given range $ [l,r] $ (boundaries are included).
Input Format
Input contains two space-separated integers $ l $ and $ r $ ( $ 1
Output Format
Output should contain single integer number: maximum value of the product $ n·ψ(n) $ , where $ l
Explanation/Hint
In the third sample weight of $ 8 $ equals $ 8·1=8 $ , weight of $ 9 $ equals $ 9·0=0 $ , weight of $ 10 $ equals $ 890 $ .
Thus, maximum value of the product is equal to $ 890 $ .