CF8C Looking for Order

题目描述

Lena喜欢秩序井然的生活。一天,她要去上大学了。突然,她发现整个房间乱糟糟的——她的手提包里的物品都散落在了地上。她想把所有的物品都放回她的手提包。但是,这里有一点问题:她一次最多只能拿两个物品,她也不能移动她的手提包。并且,因为她爱整洁的习惯,如果她拿起了一个物品,她也不能将它放在其他地方,除非放回她的手提包。 Lena把她的房间划分为了一个平面直角坐标系。现在Lena给你她的手提包和每个散落的物品的坐标(当然,一开始的时候她就和手提包站在一个地方)。她从坐标 $(x1,y1)$ 走到坐标 $(x2,y2)$ 需要用 $(x1-x2)^2+(y1-y2)^2$ 单位的时间。现在,Lena将告诉你她的房间的情况,请你为Lena找到一个拾起每个物品的顺序,使她拾起所有物品所需的总时间最小。当然,Lena最后需要返回她的手提包。

输入格式

输入文件的第一行为Lena的手提包的坐标 $x_s$ , $y_s$ 。第二行为一个正整数 $n$ ,表示总的需要拾起的物品数。接下来的 $n$ 行每行包括两个整数,表示每个物品的坐标。

输出格式

输出的第一行为一个正整数,表示Lena拾起所有物品所需的最小时间。 输出的第二行为Lena拾起每个物品的顺序。(每一个物品由它的编号代表,0表示手提包)她应该从手提包(0)出发,在手提包(0)结束。 如,0 1 2 0 3 0 表示她从手提包出发,先拾起1号物品,再拾起2号物品,然后返回手提包(并放下1和2),再拾起3号物品,最后返回手提包。 如果有多条允许的路径,输出任一条。 ## 输入输出样例 略 感谢@星烁晶熠辉 提供的翻译