CF911D Inversion Counting

Description

A permutation of size $ n $ is an array of size $ n $ such that each integer from $ 1 $ to $ n $ occurs exactly once in this array. An inversion in a permutation $ p $ is a pair of indices $ (i,j) $ such that $ i>j $ and $ a_{i}

Input Format

The first line contains one integer $ n $ ( $ 1

Output Format

Print $ m $ lines. $ i $ -th of them must be equal to odd if the number of inversions in the permutation after $ i $ -th query is odd, and even otherwise.

Explanation/Hint

The first example: 1. after the first query $ a=[2,1,3] $ , inversion: $ (2,1) $ ; 2. after the second query $ a=[2,3,1] $ , inversions: $ (3,1) $ , $ (3,2) $ . The second example: 1. $ a=[1,2,4,3] $ , inversion: $ (4,3) $ ; 2. $ a=[3,4,2,1] $ , inversions: $ (3,1) $ , $ (4,1) $ , $ (3,2) $ , $ (4,2) $ , $ (4,3) $ ; 3. $ a=[1,2,4,3] $ , inversion: $ (4,3) $ ; 4. $ a=[1,4,2,3] $ , inversions: $ (3,2) $ , $ (4,2) $ .