CF916B Jamie and Binary Sequence (changed after round)
Description
Jamie is preparing a Codeforces round. He has got an idea for a problem, but does not know how to solve it. Help him write a solution to the following problem:
Find $ k $ integers such that the sum of two to the power of each number equals to the number $ n $ and the largest integer in the answer is as small as possible. As there may be multiple answers, you are asked to output the lexicographically largest one.
To be more clear, consider all integer sequence with length $ k $ $ (a_{1},a_{2},...,a_{k}) $ with . Give a value  to each sequence. Among all sequence(s) that have the minimum $ y $ value, output the one that is the lexicographically largest.
For definitions of powers and lexicographical order see notes.
Input Format
The first line consists of two integers $ n $ and $ k $ ( $ 1
Output Format
Output "No" (without quotes) in a single line if there does not exist such sequence. Otherwise, output "Yes" (without quotes) in the first line, and $ k $ numbers separated by space in the second line — the required sequence.
It is guaranteed that the integers in the answer sequence fit the range $ [-10^{18},10^{18}] $ .
Explanation/Hint
Sample 1:
$ 2^{3}+2^{3}+2^{2}+2^{1}+2^{0}=8+8+4+2+1=23 $
Answers like $ (3,3,2,0,1) $ or $ (0,1,2,3,3) $ are not lexicographically largest.
Answers like $ (4,1,1,1,0) $ do not have the minimum $ y $ value.
Sample 2:
It can be shown there does not exist a sequence with length 2.
Sample 3:

Powers of 2:
If $ x>0 $ , then $ 2^{x}=2·2·2·...·2 $ ( $ x $ times).
If $ x=0 $ , then $ 2^{x}=1 $ .
If $ x