CF926A 2-3-numbers

Description

A positive integer is called a 2-3-integer, if it is equal to $ 2^{x}·3^{y} $ for some non-negative integers $ x $ and $ y $ . In other words, these integers are such integers that only have $ 2 $ and $ 3 $ among their prime divisors. For example, integers $ 1 $ , $ 6 $ , $ 9 $ , $ 16 $ and $ 108 $ — are 2-3 integers, while $ 5 $ , $ 10 $ , $ 21 $ and $ 120 $ are not. Print the number of 2-3-integers on the given segment $ [l,r] $ , i. e. the number of sich 2-3-integers $ t $ that $ l

Input Format

The only line contains two integers $ l $ and $ r $ ( $ 1

Output Format

Print a single integer the number of 2-3-integers on the segment $ [l,r] $ .

Explanation/Hint

In the first example the 2-3-integers are $ 1 $ , $ 2 $ , $ 3 $ , $ 4 $ , $ 6 $ , $ 8 $ and $ 9 $ . In the second example the 2-3-integers are $ 108 $ , $ 128 $ , $ 144 $ , $ 162 $ and $ 192 $ .